Product Description
CHINAMFG Machinery specializes in power transmission components.
1. Keyless Locking Devices
2. Keyless Bushings
3. Timing Belt Pulleys
4. Jaw Couplings
5. Rigid Shaft Couplings
6. Nylon Sleeve Couplings
7. Taper (Lock) Bush
8. Shaft Collars; Fixing Collars
9. Spur Gears and other parts
10. Torque Limiters
11. Mechanical Parts made-to-order
· Ubet Keyless Locking Devices are used in rotating machinery, producing clamping pressure between surface of locking device and shaft to create adjustable and releasable mechanical connection, so as to clamp gears, pulleys and other components to a shaft without threads or keys.
Materials of CHINAMFG Locking Device are available in :
Carbon Steel S45C, C45E, 1045, 40Cr, 42CrMo4V
Stainless Steel AISI431, AISI304
· Ubet Machinery Timing Belt Pulleys and Toothed Bars/ Timing Bars.
Standard and non-standard pulleys according to drawings are available.
Materials of CHINAMFG Timing Belt Pulleys are available in:
AlCuMgPb 6061 6082 Aluminum Timing Pulley
C45E 1045 S45C Carbon Steel Timing Pulley
GG25 HT250 Cast Iron Timing Pulley
SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
Other material on demand, such as cooper, bronze and plastic
· Ubet Jaw couplings are designed as 3 piece combination, including 2 hubs and 1 elastomer made of polyurethane. The curved jaw fits CHINAMFG the spider, which minimizes shock to the motor and other sensitive equipment.
Material: Alluminum for size below 42
Steel for size over 42
Finish: Natural or Anodizing
Size Range: 19 to 75
Finished bore: according to ISO fit H7
Keyway width: according to DIN 6885/1
The Tolerance of keyway is Js9
Process | Equipment | Precision Degree | Machining range |
Blank Making | Resin bonded sand production line;Vertical parting flaskless molding line,146 opening production line;Electric furnace; CHINAMFG cupola; Guillotine shear,Punching machine; Forge rolling machine; Precision die forging machine; | precision cast; precision forging; precision molding | All sorts of casting and forging parts |
Heat Treatment | Vertical furnace; Speckled furnace;High frequency quenching furnace | Material hardness transformation≤HRC1 | Hardening and Tempering; Quenching; High frequency quenching; Carburizing and quenching |
Machining | Precise NC machine | Dimesion tolerance 6 degree; Roughness Ra0.8; Roundness,straightness and concentricity accuracy≤0.01mm | inner hole≥5mm, outside diameter ≤800mm |
Grinding machining | NC excircle grinding machine; Surface grinding machine | Dimesion precision 5 degree; Roughness Ra0.4 | Outside diameter 3mm to 320mm |
Teeth-profile Making | NC gear hobbing maching; gear slotting machine | Roughness Ra1.6; Concentricity 0.05 | Maximum module M=10, OD≤1800mm |
Hobbing and drilling | CNC machine;drilling machine;NC milling machine | Hole dimesion tolerance 6 degree; positioning accuracy 0.05 | Workbench leghth 1650mm; width 852mm; minimum diameter 1mm |
Other Machining | Hydraulic broaching machine; sawing machine; punching machine; lather labeling machine | keyway tolerance 7 degree; symmetry degree 0.05 | spline; straight keyway; spline keyway |
Surface Treatment | polishing machine; plating production line; spray-painting line;coating line;oxidizing line; phosphating line | In accordance with European standard RoHS. | Surface polishing; Cr6+free zinc plating,Nickle hard chromium; Decorative chrome plating;Nickle;Paiting; phosphating; Anodizing;blackening;Dacrotized |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Condition: | New |
---|---|
Customized: | Customized |
Material: | Aluminum |
Samples: |
US$ 2/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What is the role of timing belts in conjunction with timing pulleys?
Timing belts play a crucial role when used in conjunction with timing pulleys in various mechanical systems. Here’s an overview of the role of timing belts:
1. Power Transmission:
The primary role of a timing belt is to transmit power from the driving pulley to the driven pulley. It acts as a flexible, durable, and high-strength link between the two pulleys. As the driving pulley rotates, the teeth on the timing belt engage with the teeth on the timing pulley, enabling the transfer of rotational motion and power.
2. Synchronization:
Timing belts ensure precise synchronization between the driving and driven pulleys. The teeth on the timing belt match the tooth profile of the timing pulley, creating a positive drive system. This synchronization ensures that the rotation of the driven pulley matches the rotation of the driving pulley, maintaining precise timing and coordination between different components in the system.
3. Load Distribution:
Timing belts help distribute the load evenly across the system. The teeth on the timing belt engage with the tooth profile of the timing pulley, allowing for the efficient transfer of torque and power. This even load distribution reduces stress concentration on individual components, promoting longevity and reliability.
4. Shock Absorption:
Timing belts have inherent flexibility, which allows them to absorb shocks and vibrations within the system. This absorption capability helps protect the components from sudden jolts and impacts, ensuring smooth and reliable power transmission. The flexibility of the timing belt also contributes to noise reduction in the system.
5. Low Maintenance and Lubrication-Free Operation:
Timing belts offer the advantage of maintenance-free operation. Unlike some other power transmission systems, timing belts do not require lubrication, resulting in cleaner and more environmentally friendly operation. The absence of lubrication also reduces the risk of contamination in sensitive applications such as food processing or cleanroom environments.
6. Wide Range of Applications:
Timing belts find applications in various industries and systems, including automotive engines, industrial machinery, robotics, printing presses, and more. They are suitable for transmitting power over long distances, operate at high speeds, and can accommodate different torque requirements.
7. Material Selection:
Timing belts are manufactured using different materials such as rubber, polyurethane, or reinforced synthetic materials. The choice of material depends on the specific application requirements, including factors such as load capacity, temperature resistance, chemical resistance, and environmental conditions.
In summary, timing belts, when used in conjunction with timing pulleys, facilitate efficient power transmission, ensure synchronization, distribute loads evenly, absorb shocks, require low maintenance, and find wide-ranging applications. The combination of timing belts and timing pulleys provides reliable and precise power distribution in various mechanical systems.
How do timing pulleys contribute to precision and accuracy in machinery?
Timing pulleys play a significant role in enhancing precision and accuracy in machinery. Here’s an explanation of how timing pulleys contribute to precision and accuracy:
1. Synchronization of Components:
Timing pulleys ensure precise synchronization of different components in a machinery system. By using toothed timing belts or chains that mesh with the teeth on the pulleys, rotational motion can be accurately transferred from one pulley to another. This synchronization is vital for applications where precise coordination is essential, such as in robotics, printing presses, and conveyor systems.
2. Accurate Timing:
Timing pulleys, in combination with timing belts or chains, enable precise timing of operations in machinery. The teeth on the belt or chain engage with the teeth on the pulley, allowing for accurate positioning and control of the driven components. This accuracy in timing ensures that specific actions or tasks occur at the desired intervals, resulting in precise operation and improved overall performance.
3. Consistent Speed and Motion:
Timing pulleys contribute to maintaining consistent speed and motion in machinery. The teeth on the timing belt or chain engage with the teeth on the pulley, preventing slippage and maintaining a constant speed ratio between the driving and driven pulleys. This consistency in speed and motion is crucial for applications that require uniform movement, such as in CNC machines or automated assembly lines.
4. Reduced Backlash:
Timing pulleys help minimize backlash, which refers to the slight movement or play that can occur when there is a change in the direction of motion. The positive engagement between the teeth on the timing belt or chain and the pulley teeth reduces backlash, ensuring that there is minimal or no lost motion. This reduction in backlash contributes to improved precision and accuracy in the machinery.
5. Repeatable Performance:
Timing pulleys enable repeatable performance in machinery. The precise engagement between the teeth on the belt or chain and the pulley ensures that the same motion or action is replicated consistently. This repeatability is essential in applications that require consistent and accurate results, such as in automated manufacturing processes or precision measuring equipment.
6. Tolerance for High Loads:
Timing pulleys are designed to handle high loads while maintaining precision and accuracy. The toothed design and robust construction of timing pulleys allow them to transmit power effectively, even under heavy loads. This capability to withstand high loads without compromising precision ensures reliable performance in demanding applications.
7. Compatibility with Automation and Control Systems:
The precise and accurate nature of timing pulleys makes them compatible with automation and control systems. They can be easily integrated into computerized control systems, allowing for precise positioning and control of machinery components. This integration enhances the overall precision and accuracy of the system.
In summary, timing pulleys contribute to precision and accuracy in machinery by enabling synchronization of components, accurate timing, consistent speed and motion, reduced backlash, repeatable performance, tolerance for high loads, and compatibility with automation and control systems. These characteristics make timing pulleys a fundamental component in achieving precise and accurate operation in various mechanical systems.
In which industries are timing pulleys commonly employed?
Timing pulleys find application in various industries where precise motion control, accurate timing, and reliable power transmission are crucial. Here are some industries where timing pulleys are commonly employed:
1. Manufacturing and Automation:
Timing pulleys are extensively used in manufacturing and automation industries. They play a vital role in conveyor systems, robotic arms, pick-and-place machines, packaging equipment, and assembly lines. Timing pulleys ensure precise movement, synchronization, and positioning of components, facilitating efficient and automated production processes.
2. Automotive and Transportation:
The automotive and transportation industries rely on timing pulleys for engine timing and power transmission. Timing pulleys are used in internal combustion engines to synchronize the rotation of the camshaft and crankshaft, ensuring proper valve timing. They are also employed in various vehicle systems such as steering, air conditioning, and powertrain components.
3. Aerospace and Aviation:
In the aerospace and aviation industries, timing pulleys are utilized in applications that require precise motion control and synchronization. They are used in aircraft engines, flight control systems, landing gear mechanisms, and wing flap systems. Timing pulleys contribute to the safety, efficiency, and reliability of aircraft operations.
4. Medical and Healthcare:
In the medical and healthcare fields, timing pulleys are utilized in medical devices, diagnostic equipment, surgical robots, and imaging systems. They enable precise movement and positioning in equipment such as infusion pumps, robotic surgery systems, and CT scanners. Timing pulleys contribute to accurate procedures, patient safety, and improved healthcare outcomes.
5. Printing and Paper Handling:
Printing presses and paper handling equipment utilize timing pulleys to ensure precise paper feeding, registration, and tension control. Timing pulleys enable accurate and synchronized movement of paper rolls, sheets, or labels, ensuring high-quality printing and efficient paper handling processes.
6. Textile and Garment Industry:
In the textile and garment industry, timing pulleys are employed in textile machinery, knitting machines, and sewing equipment. They assist in controlling the movement of fabric, yarn, and threads, ensuring precise and synchronized operations. Timing pulleys contribute to the efficiency and quality of textile and garment production processes.
7. Industrial Automation and Robotics:
Timing pulleys have widespread usage in industrial automation and robotics applications. They are employed in robotic arms, CNC machines, automated guided vehicles (AGVs), and material handling systems. Timing pulleys enable precise and synchronized movement, enhancing productivity, accuracy, and efficiency in industrial automation processes.
8. Semiconductor and Electronics:
The semiconductor and electronics industries utilize timing pulleys in equipment such as wafer handling systems, pick-and-place machines, and semiconductor manufacturing equipment. Timing pulleys ensure precise positioning, alignment, and synchronization of delicate components, contributing to the manufacturing of high-quality electronic devices.
These are just a few examples of industries where timing pulleys are commonly employed. Their versatile nature and ability to provide precise motion control make them valuable components in various applications across different sectors.
editor by CX
2024-04-12